Q.P. Code: 19EE0218

Reg. N	0:	an n	Research a		h.v.	510								
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR														
(AUTONOMOUS)														
B.Tech III Year II Semester Regular Examinations August-2022														
POWER SYSTEM ANALYSIS														
			(Ele	ectrica	al and	Electi	ronics	Engin	eering	g)				
Time: 3 hours Max							Max	. Mark	s: 60					
(Answer all Five Units $5 \times 12 = 60$ Marks)														
						UN	IIT-I							
1 a	Define the	terms											L2	6M
	i) Graph			ii) Su	ub-gra	aph		iii) 7	ree		iv) Co-	tree		
	v)Planar G	raph		vi)B	ranch	and L	inks							
	Г (1)	1	1	1 1	D	i.	0.	. 1	1 (1 1	D	TO	

b For the network shown below. Draw the Oriented graph from that find Bus L3 6M
Incident matrix.

2 For the following data form the bus admittance matrix by using By Direct L3 12M inspection Method if the line series impedances are as given.

3-4	0.05+j0.2 p.u					
2-3	0.05+5j0.2 p.u					
1-4	0.15+j0.6 p.u					
1-3	0.1+j0.4 p.u					
1-2	0.15+j0.6 p.u					
Bus code	Impedances					

- **3** a Explain different types of reactors briefly.
 - b Draw the Per Unit equivalent reactance network of a three-phase power L3 6M system consisting of a generator, transmission line, transformer, and motor.

R19

L2 6M

Q.P. Code: 19EE0218

1

R19

4 Draw the reactance diagram for the power system shown in fig. Neglect L3 12M resistance and use a base of 100MVA, 220KV in 50K Ω line. The ratings of the generator motor and transformer are given below.

Generator: 40MVA,25KV,X=20%

Motor: 50MVA,11KV,X=30%

Y-Y Transformer: 40MVA,33Y -220YKV,X=15%

Y-Y Transformer: 30MVA, 11Y -220Y KV,X=15%.

UNIT-III

5	a	What is load flow analysis? What is the necessity for load flow studies?	L2	4M				
	b	Derive and explain about static load flow equations.	L3	8M				
	OR							
6	a	Write step by step algorithm for Gauss-seidel method with PV buses.	L2	8M				
	b	List the merits and demerits of Gauss-Seidel method.	L3	4M				
		UNIT-IV						
7	W	ith neat sketch explain the Flow Chart for N-R Rectangular Coordinate	L3	12M				
	Μ	ethod when PV Bus is present.						
		OR						
8	a	Explain about Decoupled Load Flow Method.	L2	6M				
	b	What are the Comparisons of Decoupled & Fast Decoupled Methods?	L3	6M				
		UNIT-V						
9	a	What is steady state stability? and define steady state stability limit.	L2	6M				
	b	State and derive swing equation.	L3	6M				
OR								
10	a	Derive an expression for critical clearing angle.	L2	6M				
	b	A Large generator is delivering 1.0pu power to an initiate bus through a	L3	6M				
		transmission network. The maximum power switch can be transferred for pre						
		fault, during fault and post fault conditions are 1.8p.u,0.4p.u and 1.3p.u						
		respectively find the critical clearing angle.						

*** END ***

Page **2** of **2**